基于谐振耦合原理的光子晶体光纤偏振器件

宁向平 赵春柳 郎婷婷 金尚忠

中国计量学院光电子技术研究所,浙江杭州 310018

摘要 提出了一种基于高双折射光子晶体光纤(PCF)的偏振器件。通过引入包层缺陷结构,利用谐振耦合原理,实现在1250~1850 nm 波长范围内获得具有单一偏振模式的光子晶体光纤偏振器件,并且实现了在该波长范围内23~250 dB的消光比。

关键词 光纤光学;偏振器;有限元法;光子晶体光纤

中图分类号 O436 文献标识码 A doi: 10.3788/LOP51.060601

Photonic Crystal Fiber Polarizer Based on Coupling

Ning Xiangping Zhao Chunliu Lang Tingting Jin Shangzhong

Institute of Optoelectronic Technology, China Jiliang University, Hangzhou, Zhejiang 310018, China

Abstract A novel polarizer based on high birefringence photonic crystal fiber (PCF) is proposed. Through using cladding defect structure and resonance coupling, a single- polarization mode and 23~250 dB extinction ratio in the wavelength range of 1250~1850 nm has been achieved.

Key words fiber optics; polarizer; finite element method; photonic crystal fiber **OCIS codes** 060.2370; 060.2310; 060.2420; 060.2430

1 引 言

光纤偏振器作为一种十分重要的光学器件,在光纤通信和光纤传感领域有着十分重要的作用。随着光 学器件小型化和光纤技术的进展,光纤偏振器件的研制取得了较大的进步。目前光纤偏振器件的设计方法 主要有:金属镀膜技术^{III},双偏振结构^{I2I},以及倏逝场理论^{I3I}等。

光子晶体光纤(PCF)具有在结构设计上的灵活性和诸多良好的导光特性^[4]。通过合理设计光子晶体光 纤当中空气的孔结构和尺寸,可以实现传统阶跃折射率光纤所不具备的功能,包括宽波长范围的单模传导^[6] 和良好的保偏特性^[6]。因此,光子晶体光纤在双折射光纤^[7]和单模偏振光纤^[8-9]以及光纤传感^[10-11]方面都有着 十分广泛的应用。

目前常见的基于光子晶体光纤的偏振器件主要有:光子晶体光纤长周期光栅偏振器件^[12],空心光子晶体 光纤偏振器件^[13-14],以及基于耦合原理的光纤偏振器件^[3,15]。本文是以一种高双折射光子晶体光纤的结构为 基础。通过引入包层缺陷,使偏振模式向包层模式泄露。这种引入缺陷的方式比减小空气孔直径^[16]或进行 选择性填充^[17]等方式,具有操作简单,制作简易的优点。利用具有散射边界条件的全矢量有限元法对该设计 结构进行的分析表明,该设计在1250~1850 nm的波长范围内消光比可以达到23~250 dB。

2 光纤设计与数值分析方法

利用一种带有散射边界条件的全矢量有限元法,对设计的光子晶体光纤偏振器件进行了详细的理论模 拟分析,有限元分析法的优点是适用于任意光纤截面结构,且精度较高,数据易于处理。通过模拟分析可以 得出各模式的有效折射率^[18],其形式为复数形式:

收稿日期: 2013-10-05; 收到修改稿日期: 2013-11-04; 网络出版日期: 2014-05-16

基金项目:国家自然科学基金(61108058)、国家973计划(2010CB327804)

作者简介:宁向平(1988—),男,硕士研究生,主要从事光子晶体光纤及应用等方面的研究。E-mail:nxp442@163.com

导师简介:赵春柳(1973—),女,博士,教授,主要从事光纤传感、光子晶体光纤及应用、光纤光栅及应用等方面的研究。

E-mail: clzhao@cjlu.edu.cn(通信联系人)

激光与光电子学进展

(1)

$n_{\rm eff} = { m Re}$	$(\beta/k_0) + \operatorname{Im}(\beta/k_0),$		

式中 k_0 为自由空间波矢量, β 为传播常数, n_{eff}^* 的实部 n_{eff} 为偏振模式有效折射率, 即

$$n_{\rm eff} = \operatorname{Re}(\beta/k_0) \,. \tag{2}$$

表征光纤偏振器件特性的主要参数有两个:1) 经过偏振器件后产生偏振光的限制损耗 L_{e} 。其可以通过 n_{eff}^{*} 的虚部 Im(β/k_{0})得到,表达式为

$$L_{e} = \frac{20}{\ln 10} \operatorname{Im} \beta \times 10^{6} , \qquad (3)$$

单位为 dB/m。2) 两个偏振模式的偏振消光比 P_{RE}。由于插入损耗 L_e的单位为 dB形式,当消光比采用 dB 为单位时,其表达式为

$$P_{\rm RE} = L_{\rm cy} - L_{\rm cx} \,. \tag{4}$$

所设计的光纤截面图如图 1 所示。图中小孔直径 d₁=2.8 μm,大孔直径 d₂=7.0 μm,小孔间距为 Λ=5.4 μm。基底材料为二氧化硅,其折射率 n_s=1.45。将光纤包层竖直方向的两个空气孔去除,并以光纤 基底材料代替,从而引入包层缺陷。

Fig.1 Sectional view of the photonic crystal fiber polarizer

由于包层缺陷的存在,光纤包层中形成了两个等效的纤芯。如图2所示,在光纤包层传导的光波有多种 模式存在。因此,当纤芯的某个偏振模式与包层中某个模式满足折射率匹配条件时,二者将发生模式耦合, 纤芯模将与包层基模或者其他模式发生耦合。耦合发生时,纤芯模光场能量向包层某一模式发生泄露,提 高了该偏振模式在纤芯中的限制损耗。

图2 光子晶体光纤偏振器包层模式模场分布

Fig.2 Mode field distribution of PCF polarizer cladding mode

图3为波长分别为1350,1550,1750 nm时,光子晶体光纤偏振器端面的模场分布。由图3可知随着波长的 增大,纤芯中的X偏振模式的光场能量向包层缺陷模式的泄露越多,对X偏振模的限制损耗就越大。

图3 波长为1350,1550,1750 nm时,X偏振模式模场分布

Fig.3 $\it X$ polarization mode field distribution of 1350, 1550, 1750 nm

图 4 为波长分别为 1350, 1550, 1750 nm 时 Y偏振模式的模场分布图。由图 4 可知, 当包层模式与X偏振模式发生模式耦合时, 纤芯中的 Y偏振模式由于不满足折射率匹配条件, 被很好地约束在纤芯当中传导。由

激光与光电子学进展

于发生了谐振耦合效应,纤芯当中的X偏振模式的限制损耗增加,传导受到抑制。而Y偏振模式的传导未受到影响,因此该光子晶体光纤偏振器件可以产生Y偏振模式的偏振光。

图 4 波长为 1350, 1550, 1750 nm 时, Y偏振模式模场分布 Fig.4 Y polarization mode field distribution of 1350, 1550, 1750 nm

3 理论结果与讨论

图 5 为数值分析后得到的 X、Y 和缺陷模式有效折射率曲线图。包层基模的有效折射率介于 X 偏振模式 和 Y 偏振模式的有效折射率之间。在 1250~1850 nm 的波长范围内, X 偏振模式与包层缺陷模式满足谐振耦 合条件,其能量由纤芯向包层泄露, 限制损耗增加。

图 6 为由(3)式得到的各偏振模式和包层模式的限制损耗曲线。由于模式泄露, X 偏振模式的插入损耗由 1250 nm 处的 25 dB/m 上升到 1850 nm 处的 253 dB/m。而此时 Y 模式仍能很好地束缚在纤芯当中传导, 其限制损耗保持在 2 dB/m 左右。

图 7 给出了在 1250~1850 nm 的波长范围内, X、Y偏振模式消光比。消光比由 1250 nm 处的 23 dB 上升 到 1850 nm 处的 251 dB,在 1550 nm 处,经过 50 cm 的传导,就可以达到 30 dB 的消光比,此时 Y模式的泄露 损耗为 0.5 dB。因此 Y偏振模式的泄露损耗在 2 dB/m 是可以接受的^[19],该光子晶体光纤偏振器件能够达到 很好的偏振效果。

图 8 给出了 1400~1600 nm 波长范围内偏振消光比。在这个波长范围内,偏振消光比与波长成线性关系。光纤传感领域常见光源的波长大多集中于 1500~1600 nm 之间,该光子晶体光纤偏振器的偏振消光比 在这一波长范围内高于 45 dB。

4 结 论

以一种高双折射光子晶体光纤为基础,通过改变空气孔的尺寸和引入包层缺陷,利用谐振耦合原理,将 纤芯中的一个偏振模式耦合入包层。最终在纤芯当中形成另一个模式的偏振效果。分析结果表明,在 1250~1850 nm范围内,两个偏振模式理论上达到23~250 dB的消光比,且可传导偏振模式的限制损耗为 2 dB/m 左右。在1400~1600 nm 波长范围内的偏振消光比与波长有很好的线性关系。此外,该种光子晶体 光纤偏振器件在接近红外波长的范围内有极高的偏振消光比。因此,在红外光偏振传感器件的制作上也应 会得到很好的应用。

194209.

激光与光电子学进展

参考文献

- 1 Wang Wentao, Liu Jianjun, Li Xiangjun, *et al.*. Direct fabrication of terahertz polarizer and filter by laser induced and non-electrolytic plating with copper[J]. Acta Optica Sinica, 2012, 32(12): 1231002.
- 王文涛,刘建军,李向军,等.激光诱导和化学镀铜制备太赫兹偏振器和滤波器[J].光学学报,2012,32(12):1231002.
- 2 Hu Yongming, Liao Yanbiao, Chen Zhe, *et al.*. Manufacture of a double polarization structure of polarization maintaining fiber polarizer[J]. Acta Optica Sinica, 2001, 21(6): 741-743.

胡永明,廖延彪,陈 哲,等. 双偏振结构保偏光纤偏振器的研制[J]. 光学学报, 2001, 21(6): 741-743.

3 Du Yao, Chen Zhe, Yu Jianhui, *et al.*. All micro-fiber polarization filter based on evanescent field coupling[J]. Chinese J Lasers, 2012, 39(6): 0610002.

杜 垚,陈 哲,余健辉,等.耦合型微纳光纤偏振滤光器研究[J].中国激光,2012,39(6):0610002.

- 4 Russell P S J. Photonic-crystal fibers[J]. J lightwave technology, 2006, 24(12): 4729-4749.
- 5 Geng Kaisheng, Guan Jianfei. Coupling characteristics of dual-core photonic crystal fiber with rectangular lattice[J]. Chinese J Lasers, 2013, 40(3): 0305007.

耿开胜,关建飞.矩形晶格双芯光子晶体光纤的耦合特性[J].中国激光,2013,40(3):0305007.

6 Li Dan, Liu Min, Jian Duo, *et al.*. Characteristics of highly birefringent dual-core photonic crystal fibers[J]. Chinese J Lasers, 2012, 39(4): 0405005.

李 丹,刘 敏,简 多,等.高双折射双芯光子晶体光纤特性[J].中国激光,2012,39(4):0405005.

- 7 Hansen T P, Broeng J, Libori S E B, *et al.*. Highly birefringent index-guiding photonic crystal fibers[J]. Photonic Tech Lett, IEEE, 2001, 13(6): 588–590.
- 8 Eguchi M, Tsuji Y. Design of single-polarization elliptical-hole core circular-hole holey fibers with zero dispersion at 1.55 μm [J]. J Opt Soc Am B, 2008, 25(10): 1690–1701.
- 9 Ren G, Shum P, Hu J, *et al.*. Study of polarization-dependent bandgap formation in liquid crystal filled photonic crystal fibers[J]. Photonic Tech Lett, IEEE, 2008, 20(8): 602–604.
- 10 Lou Shuqin, Wang Xin, Yin Guolu, *et al.*. Curvature sensor based on side-leakage photonic crystal fiber with high sensitivity and broad linear measurement range[J]. Acta Physica Sinica, 2013, 62(19): 194209. 娄淑琴, 王 鑫, 尹国路, 等. 基于侧漏型光子晶体光纤高灵敏度宽线性范围弯曲传感器的研究[J]. 物理学报, 2013, 62(19):
- 11 Peng Jiaobo, Bian Zhenglan, Hao Yunqi, *et al.*. Frequency locking of two DFB lasers for distributed optical fiber sensing applications[J]. Chinese J Lasers, 2012, 39(7): 0705001.

彭交波, 卞正兰, 郝蕴琦, 等. 用于布里渊分布式光纤传感的光学锁频系统[J]. 中国激光, 2012, 39(7): 0705001.

- 12 Wang Y P, Xiao L M, Wang D N, *et al.*. In-fiber polarizer based on a long-period fiber grating written on photonic crystal fiber[J]. Opt Lett, 2007, 32(9): 1035-1037.
- 13 Xuan H F, Jin W, Ju J, et al.. Hollow-core photonic bandgap fiber polarizer[J]. Opt Lett, 2008, 33(8): 845-847.
- 14 Qian W, Zhao C L, Kang J, *et al.*. A proposal of a novel polarizer based on a partial liquid-filled hollow-core photonic bandgap fiber[J]. Opt Commun, 2011, 284(19): 4800-4804.

- 15 Zhang L, Yang C. A novel polarization splitter based on the photonic crystal fiber with nonidentical dual cores[J]. Photonic Tech Lett, IEEE, 2004, 16(7): 1670-1672.
- 16 Lee S G, Lim S D, Lee K, *et al.*. Single-polarization single-mode photonic crystal fiber based on index-matching coupling with a single silica material[J]. Opt Fiber Technol, 2011, 17(1): 36-40.
- 17 Qian W, Zhao C L, Kang J, *et al.*. A proposal of a novel polarizer based on a partial liquid-filled hollow-core photonic bandgap fiber[J]. Opt Commun, 2011, 284(19): 4800-4804.
- 18 Zhang Fangdi, Liu Xiaoyi, Zhang Min, *et al.*. Numerical simulation of a novel rectangular-lattice single-polarization single-mode photonic crystal fiber[J]. Acta Physica Sinica, 2006, 55(12): 6447-6452.
 张方迪, 刘小毅,张 民,等. 新型空气孔长方形排列单模单偏振光子晶体光纤的数值模拟[J]. 物理学报, 2006, 55(12): 6447-6452.
- 19 Zhang Xueliang, Ni Ming, Hu Yongming, *et al.*. Study on the performance of the abrasive PMF polarizer[J]. Journal of Optoelectronics·laser, 2005, 16(5): 538-540.

张学亮, 倪 明, 胡永明, 等. 磨抛型保偏光纤偏振器特性研究[J]. 光电子·激光, 2005, 16(5): 538-540.